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" less lnterésting results have been rel{gated to the Appendtx

BALLISTIC RESEARCH LABORATORIES
REPORT NO. 682

Franz L. Alt

Aberdeen Proving Ground, Md.

1 September 1948 -

STEADY-STATE SOLUTIONS OF THE EQUATION OF BURNING

ABSTRACT

hen a substance such as a low-order explosive or a propellant is ignited,’
the burning proceeds with a speed and temperature whichare described by acertain
partial differential equation. The general solution of this equation i3 not knoéwn.
The present report deals with a speclal case of this equation, namely, the case of
steady state, in which the burning progresses with uniform speed. We assume more-

over that the burning substance has the shape of a thin rod of infinite length..’ The

limitation to the steady-state case not only has the advantage of simplifying the
problem mathematically, but it is interesting because in many practical cases the
phenomenon of burning approaches the steady-state rapidly. Thus, the steady-statev
solutions presented in this report may also be thought of as limiting cases of more
general solutions. Similarly the limitation to a thin infinite rod is made mostly be-
cause it simplifies the problem;but the solutions for many other shapes donot dtffer
much from the ones obtained here. . '

The present report considers both the case of a perfectly heat;insulat.ed»i'od‘

and that of a rod which loses heat to its surroundings.  For the first case, all pos=:

sible solutions are obtained; for the second case, the report -is limited to the com~ .
monly observed ranges of values of flame speed, heat loss and room temperature. -
Within these limits, the-various possible types of solutlons are discussed’ and'a

small number of solutions are presented numerlcally 80 that other solutions may be
obtained by interpolation. : ~ C ,

Sections 1 to 4 of this report contain the major results and an outl[n

methods used in deriving them. t of the detalled proofs as wen as, a-few sthe

ML




4 BALLISTIC RESEARCH LABORATORIES

METHOD OF APPROACH

It is desired to find the changes of temperature in a material in which an exothermic chemical
reaciion, such as burning, is taking place, We consider the case in wh;ch the material nas the shape of a
thin rod of infinite length, Each point on the rod is characterized by its abscissa, X, measured in centi-
meters from some peint as origin. The temperature T (meaSured in degrees absolute) in any point of the
rod {3 a function of X and of the time t {measured {n seconds from an arbitrary origin;. Unless the tem-
perature is the same for all X, heat will be conducted along the rod and will cause temperature changes

which are subject to the well-knrwn equaticn of heat flow,

2

aT a7
- T —

ax>
where k 1s a constant which depends on the thermic properties of the material. At the same time, heat
will be generated in every point by the exothermic reaction. We :assume1 that the rate of increase in
temperature brought about by this reaction is glven by the Arrhenius expression A e-Q/RT
Q are constants determined by the nature of the reaction, and R is the gas constant. In addition to this
rate of change in temperature and to the one du= to heat conductisn along the rod, we may have a certain

, Where A and

loss of heat to the space surrounding the rod. We shall first consider the case in which the rod is per-
fectly heat-insulated; we then have

2

v}

T . ~Q/RT (V

T
— K + A e
ot X

2

‘T'his case is identical with thzt of a semi-infinite solid in which heat flows only inward from the surface
and not parallel to the surface; and 2lso with any other case of one-dimensimal flow. Subsequently we
shall deal with the case in which heat is lost to the surrounding space (or gained from it) by conduction.
In this case

.
9'% - k8T A e YRT _cpor ) 2
axd s

where we have assumed that the heat conduction batween the rod and the surrounding medium is propor-
tional to th2 difference in temperature (an assumpticn which is true as a first approximation). C is the
factor of proportionality, and Ts is the temperature (assumed constant) of the space surrounding the burn-
ing rod.

1’I‘hlss assumption implizs, somewhat unrealistically, that the burning substance remains chemically homo-
geneous throughout the process of burning.

U RN AL AR A 8 it
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We shall not attempt to find all solutions of ithe partisl differential equations (1) and (2), but con-
fine curselves to steady-state solutions, that is thoge solutions for which T, as a function of X and t, re-

mains constant along all lines

X -ut = const. (3)
"

where u is a predetermined constant. In tnis case the problem of finding T for all X and t reduces itself
to the simpler one of finding T for all X and one particular t, say t = O; for
T(X, 1) »TX -ut, 0) (4)

We shall writa

X -ut =X* T(X -ut, 0) = T* (X*) (4a)

The same facts may also be expressed by saying that "the points of constant temperature travel along the
rod with uniform veloeity u.’
From {4) we have

dT* (X*)
dxt

OT(X, 1) | AT*(XY) 8T, B _
Bt

90X dx=

S0 that the partial differential equation (2) becomes an ordinary cifferential equation

Zma * _O/R'T*
k:xﬁz rufrs + 2 YT Lol -0, ®

Of the six parameters in this equation, three may be eliminated by a sultable choice of the units of

measurement for X anC T. If we set

X+ =¥ - ut = x. YkQ/RA, T* (X*) = y(x)- Q/R
(5a)
u = vVEKAR/Q, C = c-AR/Q, Tg=yg+ VR
equaticn (5) becomes
a? dy . -1/y
d—;%+vdx+e -c(y-ys)-o. ’ ®

The symbols y and Yy reprasent absolute temperatures, expressed in units of Q/R, Stmilarly, v is the ve-
locity of propagation of the burning process, and x may be considered as efther time or distance, all meas-
ured in suitable units.

|
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8 BALLISTIC RESEARCH LABORATCORIES

Equation (8) 1s the "equation of steady-State burning." In order to solve it we note that it does not
contaln x axplicitly. Therefore, ity order can he reduced hy one. W« cénslder y, rather than x, as the in- 7
dependent variable of the problem and set dy/dx = -z(y). Then dz/dy = (dz/dx) - (dx/dy) = (dzy/dxz) <1/, k
and (8) becomes

'1/ AR r
a—;-v--z—(e y-c(y-ysu n
Thiz is a non-linear ordinary differential equation of the first order, We ghall refer to it ag the "trans-
formed equation." Our principal task will be to solve it; this te accomplished by numerical integration,
Once this is done, the solution of {8) can be reduced to a simple quadrature, as follows: instead of finding b
y as a function of x, we find x as a function of y, from the equation

L

dx d
x= 'd?d}"-_[ (8

where z(y) is the solution of (7). Having =0olved {8}, we obtain tha sclution of {5) by changing the scale factors
as in (Ba), and the solution of (2) by means of (4).

Equations (5) and (8} are of the second crder, and therefore two boundary conditions are required in
order to determine a particular integral of either of these equations. One of these, which may be given in the
form of prescribing the values of the temperature or its first derivative for a particular value of x, only
serves to fix the location of the solution with respect to the x-axis. This is because, If one solution is glven,
infinitely many others may be obtained by shifting the former by an arbitrary amount parallel to the x-axis.
The cther boundary condition, however, has an essential influence upon the shape of the golution curve, 1t is
customary, in dealing with the equation of burning, to prescribe that the process of burning should start from
a non-burning equilibrium state: in the case withoat heat loss, the burning substance is supposed to have
originally been at zero temperature (since at any other temperzture it is not in equilibrium), and in the case
with heat loss, it is supposed to have originally been at that temperature Yo which is just so much higher
than the room temperature y_ that the heat generated within the substance, e“l/yo, is balanced by the heat
lost to the surrounding space, c(y 0" ys). In other words, it is customary to prescribe, as the second
boundary condition, that y = O(inthecasec = 0jory = Ve (in the case c#0) "4 long time ago.” It is not pos- :
sible to postulate these conditions for any finite time (nor, by the same token, for any finite value of x),
since this would contradict the assumption of a steady state, Therefore, the second boundary condition s :
formulated by stating that the temperature y should approach the limit stated (O or yo) as x tends to infinity, "3
or, which is the same, as t tends to - eo. Evideatly, z = -dy/dx must simultaneously tend to zero, Thus, !
in tering of the transformed equation, this boundary condition states that z = 0 for y = 0 (In the case ¢ = 0)
orforys= v, (in the case c # 0).

JOLUTIONS OF THE TRANSFORMED EQUATION WITHOUT HEAT L.OSS

We consider first the case ¢ = 0, l.e,. the case of a perfectly insulated rod. We confine ourselves
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to non-negative values of y. This limitation suggests itself because of the interpretation of y as the absolute
temperature of a substance (except for a scale factor). Figure 1 shows the shape of several salution curves
of (7). Figures 1 - 4 are not drawn to scale, They merely show the general appearance of the sclutions.

In Figures 1, 2 and 4 the temperature (y) is plotted horizontally, and the rate of change of temperature (z) is
plotted vertically.

There are infinitely many solution curves similar to curve I-A of the figure. They siart at*me origin
with horizontal tangent, increase to a maxtmum, then decrease, intersect the y axis vertically, turn back in
the direction of decreasing y and reach the z axis for a certair negative value of z; ai the {nterszction with
the z axis the slope ig v, There is one and only one curve of this type through every point in the area bound-
ed by the 2 axis and curve I-B.

Curve I-B is similar in shape to the curves of Type i-A except that its slope at the originis v
rather than 0. There is only one curve of this type. In the application of this differential equation to the
problem of burning this i¢ the most interesting solution.

The solutions of Type I-C are simlilar in shape to curve I-B but they start at a point on the z axis
with some positive value of z, rather than at the origin, The slope at this point is again v. There are in-
finitely many solutions of tkis type. One and only one passes through each point in the area between curves
I-B and TI-C.

Solution II-C starts at the 2 axis with positive z and slope v, increases monotonicaliy and approaches
the value 2 = 1/7 asymptotically. There is only one solution of this type.

The solutions of Type IlI-Cstart atthe z axis with a value of z larger than that of solution II-C.
Their slope at the starting point is v. With increasing y they increase to infinity. Thelr slope decreases
from y to a positive minimum value, then Increases again and approaches v as y goes to infinity. Cne and
only one solution of this type passes through each point {n the area above curve II-B. The curves of Type I-C,
11-C and II1-C satisfy the differentiai equation but not the boundary condition z(0) = 0. Cn the other hand, all
curves of Type I-A as well ac the single curve of Tyoe I-B are admissible solutions of our problem.

The five types of solution curves which we have described and which are sketched in Figure 1 axist
if v is considerably smalier than one. If the value of v is increased, the starting point of solution [I-C' maves
closer to the origin. For a certain value of v it colncides with the origin. For this v there are nn s..utions
of Types I-B and 1-C. We shall denote this 1imiting velocity by V. Its value has bYeen determined by re-
peated numerical integration:

v = ,80280.

If v increases beyond this value, then the scolution curves have the shapes shown in Figure 2. The
solutions of Type I-A are similar to those for small v. They fill the area below curve 1I-A. The latter i3
a solution curve which starts at the origin with slope 0 and increases asymptotically toward z = 1/v,
Curves I[I-A, III-B and III-C of Figure 2 are similar to the curves TI-C of Figure 1, except that TII-A zand
I11-B start at the origin and ITI-A has a horizontal slope at the origin. There is only one solutlon of Type
III-B but infinitely many of Types ilI-A and ITI-C.
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SOLUTIONS OF THE EQUATION OF STEADY-STATE BURNIRG WITHOUT HEAT LOSS

In the preceding peragraph wae have discussed solutions of the transformed Equation (7). We now
turn to the corresponding solu‘lams of Equation (6) still limiting ourseives tn the case of perfect insulation
(e = 0). These solutions can be Jouad by the simpie integrstion indicated in Equation (8).

Solutions of Equation (8) corresponding to the five types of Figure 1 are shown In Figure 3. Note
that on this diagram the temperature y is plotted vertically whereas in Figure 1 it was plotted horlzontally.

The horizontal axis in Figure 3 may be Inlerpreied In two ways: as the X-axis along the burning
rod, where burning Is assumed to progress from left to right; or as the tlme axis, where time i read from
right to left. In the fcrmer interpretation, each of the curves shown in Figure 3 is a possible temperature
distribution along the rod, "possible" meaning a distribution which will result in a steady flow of heat; that
is to say, if one of these distributicns exists initially, then the generation of heat within the material of the
rod and the flow of heat along the rod will change the temperature in each point in such a way that after any
interval of time the temperaturs distribution will appear to have been shifted to the right without having
changed its shape. In the second interpretation, we may find out how the temperature In any desired point
of the rod changes with time, by traveling along one of the curves from right to left, We see that "a long
time ago’ the temperature was zero (absolute), that it rises gradually, and that on some curves it reaches
a maximum and declines again.

’ The solutions of Types I-C, II-C and III-C reach an absolute temperature of O at some finite point
X (or, in the other interpretation, the temperature starts at O at some finite time). These. solutions are,
therefore, not representations of any steady-state phenomenon. Solutions of Type I-A or I-B, on the other
hand, ean be interpreted as temperature curves along a burning rod in the steady-state. On each of these
curves y has a maximum which might be thought of as the temperature of the burning front.1 This front
should be visuaiized as proceeding along the burning rod from left to right (the direction of burning is de-
termined by the sign of u in Equation (3) ). The portion of the temperature curve to the left of the burning
front (and correspondingly that portion of the solutions of (7) for which z is negative) covers that part of
the rod which is already burned. Because of the chemical changes caused by burning, Equation (1) no
longer represents the temperature changes .n this region.

in Figure 3 all solution curves have been drawn through one point, That is to say, we assume
that the temperaturc in that particular point of the rod is given. Cther solutions are obtained by shifting
those shown in the diagram to the left or right by any desired distance.

Certain points in Figure 3 are lettered the same as the corresponding points tn Figure 1, to
facilitate comparison.

The maximum ordinate of curve 1-B is of particular interest, It represents the highest burning

1
pravailing in a .urning substance are not accurately described by Equation (1), especlally not at high tem~

peratures at which most burning substances undergo chemical changes. It is probable that a polnt sormmewhat

to the right of the maximum in Figure 3 corresponds more closely to the actual burning front.

Actually this temperature will usually differ from the observed burning temperature because the conditions

B s sany. W
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BALLISTIC RESEARCH LAPORATORIES 8

temperature which could possibly be reached in steady-state burning. Its value depends on v. The following
values were determined by numerical integration:

v Maximum y
1071 0.2
1073 0.0592
2x 107t 0.0565
2x107° 0.0448
5% 1078 0.0277

These values are plotted In Figure 5. The aceuracy of the last decimal place is douttful. The figures can
be converted to customary units, (degrees, centimeters, etc.) by means of Equations (5a). As v grovs be-
yond 0.1 towara the value V = ,90280, the maximum of y grows rapidly to infinity.

The only difficulty in the integration process (8) arises when z becomes 0. This cccurs at most
twice on each solution curve. It can be shown that at the points where the solution of (7) intersects the y
axis with vertical slope, the integral of 1/z has a finite value, On the other hand, for those solutions of (7)

which pass through the origin, the !ategral of 1/2z gces to Infinity as y tends to 0,

SOLUTIONS ALLOWING FOR HEAT 1,0SS

We now turn to the case in which ¢ has some positive value, that is the case in which heat is lost
to the medium surrounding the burning substance. The shapes of the solution curves in this case vary
greatly with the varying values of v, ¢ and Vg In thia discussion we shall confine curselves to those values
which are found in actual experiments with burning substances. The range for v is that shown in the tabie

15 2nd 10722, For ¥4 which

in the preceding section. Realistic values of ¢ are of a magnitude between 10
represents room temperature, the values 0.012 and 0.017 are used. The difference between these values is
caused not so much by variations in real room temperature, as by the differences in the constant Q, which
determines the scale in which y is measured.

Furthermore, this discussion will be confined to that range of y which corresponds to temperatures
commonly measured. An added reason for this limitation is that for extreme vilues of y the heat loss is
provably not adequately represented by the term cly - ys). Some indication of the behavior of solutions in
this extreme range is given in the Appendix.

The shape of the solution curves of (7) is shown in Figure 4. In tiizs figure Yy represents the tem-
perature of the rod before burning, 2 the ignition temperature. The value Y, Is slightly larger than room
temperature. This {s because even at room temperature zome heat is generated in the combusiible sub-
stance by the chemical reactions taking place, The difference in temperature between the rod and the sur-
rounding space musl be just large enough so that the amall amount of heat generated equals the heat lost
to the surrounding space. As the temperature rises above Vo the heat loss increases at first more rapidly
than the amount of heat generated. For still higher temperatures, however, the latter increases more

rapidly; when the temperature reaches the value Vs heat loas and heat generation are again in balance.
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As before, we shall classify the sclutions according to their behavior with increasing y. Some
reach a maximum and then decrease to z = 0, (Type 1), some grow to Infinity (Type III), and one approaches
asymptotically the value z = 1/v (Type 1I). The further subdivision according to shape near the singular
pointa differs somewhat from the case without heat loss.

In Figure 4, to the right of Yy the shape of the curves is similar to those in Figure 1. However,
the slope of Type I-A curves at the point v, is not O but a small positiva constant. The slope of curve I-B
at the point vy is slightly smaller than v. All other curves intersect the liney = Y1 with slope v.

To the left of v, there are infinitelv many solution curves threogh the pointy = Yy 2@ 0. All of
them have the same small positive slope, except for one which has a slope slightly smaller than v. The
latter is the continuation of curve 1-B, the former are the continuations of the curves of Type I-A, Of
ihese, one passes through the point y = Yy 2= 0, while the others are above or below it.

In order to have our boundary conditions satisfied, we have to consider solutions in the (y, 2)
piane through the point y = V2= 0. There are only two solution curves through this point, one increasing
and one decreasing. This fact is of considerable importance in tha physical interpretation of the solutions,
The decreasing curve represents not a burning substance but rather a substance in which the temperature
is initially at the ignition point and drops slowly toward room temperature. (In Figure 4 this is the curve
i Type 1-A mentioned above; with a different selection of parameters it might be a curve of different
type.) Tae other of the two curves passing through the point Y, is marked "I-D" in Figure 4. It represents
steady-state purning, It is interesting to note that the latter solution is unique, On the other hang, in the
case without heat loss (¢ = 0) we saw that there are infinitely many solutions which start at 9 temperature
and represent steady-state burning,

The infinitely many solution curves passing through the point ¥ represent substances in which
he temyperature was initially at the ignition point. Since this is a point of unstable equilibrium, it is not
surprising to find that there are infinitely many ways in which the temperature, starting from this value,
cin either increase or decrease.

Figure 4 shows the field of the transformed equation (7), similar to Figures 1 and 2. It is easy to
visualize the shape of the corresponding solutions of the equation of burning, in enalogy to Figure 3. In
particular. the solution corresponding to I-D in Figure 4—the only one which satlsfies our boundary cone
ditions —locks like 1-B in Figure 3, except that its asymptote on the right is not zero but Y

It is of primary interest to determine numerically the maximum temperatures for the unique so-

lution of steady-state burning. The following values were obtained by numerical integration of Equation (7):

v ys Maximum y

1073 012 0572

107° 017 0663
%1072 017 0428
2x107° 012 0268

These figures, as well as those given in "Solutions of the Equation of Steady-State Burning without Heat Loss,"

ML 4 s i i 3
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previously, are plotted in Figure 5. The accuracy of the last decimal place is in doubt. The difference be-
tween the values of y given in the two tables is approximately 3% in the case where Yy is .012, and 4% where
¥g is ,017. These percentages can certainly not remaln constant for all values of v, but in the range covered
by this report they represent a sufficlently good approximation,

Note that the value of ¢ is not listed in the above table. This is because the results are practically
independent of ¢ ag long as c is small but positive. The presence of c does, however, have the measurable
etfect of "stopping” the solution curves at y = Yo rather than at y = 0,

The temperature curves which have been calculated numerically are shown in the attached graphs
9-13. Those for ¢ = 0 are solutions of TypeI-B, those for posilive ¢ are solutions of Type I-D. Figures 9-12
are plots of the temperature gradient against temperature, similar to Figures 1 and 4. Figure 13 shows
the temperature distribution along the burning substance, similar to Figure 3. Cne difference between
Figures 3 and 13 is that the former shows all integral curves going througn one point, whereas in the latter
each curve 18 assumed to reach its maximum for x = 0. This 13, of course, a matter of choice of initial

conditions. Mvreover, Figure 13 has a logarithmic scale for x, so that x = 0 is not shown,

o
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12 BALLISTIC RESEARCH LABORATORIES

APPENDIX

Computational Procedure. In the application of Equations (1) and (2) to steady-state burning, the
most interesting solutions are (a) in the case ¢ = 0, the solution of Type I-B, and (b) in the case of positive
e, the solution of Type I-D, In the form (7) the equation can be Integrated numerically by one of the usual
methods, Only the points for which 2 = 0 need special attentior, since in these points the right-hand side of
(7) is not determined. These points shall now be considered.

We shall use the abbreviations

oty) = e ey -y (@)

q(y,z)=v-p—g—) (10)

so that Equation (7) can be written

é—;= a(y, z) (11)

The points in which the integrals of this equation intersect the y-axis are of two types: those where p(y) # 0,
and those where p(y) =

In the former case, if we approach a point z = 0 along an integral curve of (11), dz/dy increases be-
yond all bounds. The process of numerical integration can nevertheless be continued in the neighborhood of
these points by changing variables, censidering z as the independent and y as the depen-ent variable, and in-
tegrating the equation in the form

dy . \
@ TS

ey -y

It remains to investigate the points where z = 0 and p(y) = 0. It can be shown by elemertary con-
siderations that the function p(y) vanishes in one, two or three points (for real positive y) depending on the
values cf the constants ¢ and Vg If ¢ is larger than or equal to 4 e_z then p vanishes in one place only,
regardless of the value of Vg H c is less than 4e then P vanishes in three places provided Ve lies be-
tween certzin boundaries, For c¢ less thane , the lower of these boundaries is zero, i.e., p vanlshes in
three place:; provided only that v 18 small enough. In practice, ¢ is always very much smaller than either
of the two limits mentitmed, being of a magnitude between 10 and 10 22. Moreover, in all practizal
cases y 1s so smali that p(y) vanishes for three different values of y. We shall denote these three places

order by Yo ¥ir Tg- The smallest, Yo is always slightly larger than ¥gi it is the temperature of the
combustible material before burning has begun. vy is the ignition temperature. Vo is, in the usual appli-
cations, yo large that it {s never reached.

I ¢ = 0, then p(y) vanishes only for y = O,

We shall see below that If an integral curve of (11) passes through the point (Yl' 0), then in that point

A e R | r::wwmmml@’{tr
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BALLISTIC RESEARCH LABORATORIES 13

its slope has one of the two values

2 -1/y
+ YV e 1

v 1
5t T -3 e)
¥y

If an integral curve of (11) passes through the point (yo, 0), then its slope in that point has one of the two

2 -1/y
v /v L °_ )
2-’/4 (yze g

o]

values

in practical cases, these two values are almost equal to v + g-and to - ‘67, respectively, If, in the case ¢ = 0,
an integral curve passes through the origin, then its slope at the origin has one of the two values 7 or O.

For the numerical computation it is important to remember that the integral curve going through
the origin with slope v, or through (yo' 0) with slope v + ¢/v, remains almost straight for a considerable
distance, Thus, the numerical integration along these curves can be begun with fairly large steps. At some
distance from the origin or the point (yo, 0), the slope begins to differ noticeably from its initial value, and
then the length of the integration step must be diminished. :

The solution of Equation (8) is obtained, as explained in "Method of Approach” (page 8), by in-
tegrating the differential - %Z . However, the integrand becomes infinite when z is zero. if simultaneously
ply) is different from zero, then the integration can nevertheless be carried out; for in the neighborhood of

such a singularity

d --l--i--dz dz dz
z z dz
dy

T By VR
4

and in the last form the denominator differs from zero even at the singular point. On the other hand, if p(y)
also vanishes, then it can easily be seen that the integral becoines infinite. In other words, corresponding
to those solutions of (7) which go through the origin or through the point (yo, o) or (yl, O)‘, we have solutions
of (8) which approach asymptotically, as x goes to irfinity, the valuey =0 or y = YoOry=9;-

Integral curves in the singular points (z = p(y) = 0). (a) Inthe casec # 0, the behavior of the inte-
gral curves of (7) or (11) can be determined by known methods (see, for example, E. Goursat, Course in
Mathematical Analysis, Vol, 1I, Part II, pp. 178-180). If (y*, 0) represents one of the three singular points
(yo, 0y, (Yl’ o, (yz, 0) of Equation (11}, the integral curves of (11) in the neighborhood of this point are

imown to be similar to those of the equation

dz _ vz -(y-y9 P (y%)
&y z

Integral curves of the latter equation have at (y*, 0) one of the two slopes

LS %v +) i—vz -p' (y®)

| R el
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and

s" = %V - '/ i_v2 - pt (y*) A

If s*, s" are reail and have opposite sign (i.e., if p' is negative, which is the case for %, and y,, but not for yl),
then there are only two integral curves passing through the singular point; the latter is called a "Saddleback”.
(See the point ¥, in Figure 4). At (yl, 0), p’ is positive, so that ', s'" are either real and positive or imagi-
nary. If they are real, the point is a node; through it pass one integral curve with slope s° and infinitely many
with slope 8", If s', s" are complex (or real but equal), then the point (y1. 0) is a focus, the integral curves
have the form of spirals which approach the focus. The corresponding solutions of equation (8) give a tem-~
perature which oscillates above and below the ignition point ¥y The condition for the existance of such os-
cillating solutions is
P (y) > 5v2.

(b} In the case e = 0 the above method is not applicabie because p’ vanishes for y = O (which is the
only singular point in this case). We can, however, proceed as follows;

Suppose that a solution of (7) or (11) goes through the origin, and has in that point a derivative
z' (0). Then

2t (0) = 1im 2
y=0

According to a theorem about real functions, there is a sequence of points y, converging to O, for which

z2' (0) = 1im 2’ (y)
y=0

Thus

2O =1m -2 . voum @& Yy Loy 2O L ym ¥ (12)
y=0 z y=0 ¥ 2 y=0 y=0 2

The last step, howevaer, is permissible only if we know that at least one of the two limlts on the right con-

verges to a value different from zero. Now if z' (0) £ O, then

lim ¥
y=0 ©
exists and 13 equal to 1/2' (0), and therefore different from 0, and it follows that the last equation of {12)

holds. Iis only solution is 2! (0) = v. Thus, z' (0) = O and 2' (0) = v are the only possible slopes of integral
curves of (7) at the origin in the case ¢ = O,

FRRACAT Z1o U2 JE - PR !’;“"""ﬂﬂ
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We shall prove in the next section that the origin is a node; there Is only one integral curve of (7
golng through the origin with slope v, while there are infinitely many with slope 0. This proof is based on a

study of the curvature of the integral curvas.
The Curvature of Integral Curves. In the further discussion we shall denote, as before,

(13)

p'(y

and furthermore by q' the derivative of g with respect toy in the direction of the integral curve of (7):

q(y, - 8D, 00D &

y dz dy

1 -\
"%m+%%WMﬂ

4

An integral curve going through the point (y, 2) is convex or conrave in that point depending on the sign of
q' {y, 2). In the (y, z) plane the region where q' is positive is separated from tne region where 1t is negative

by a curve along which q@' = O (and possibly by portions of the y-axis, on which q' is nct defined).
For this curve we have '

]
O0=g'= -EZ—+

p’-zz-vp-z+p2=0. (15)

This equation, whict. fetermines z as a function of y, is the equation of the curve on which q' = 0, The dis-
criminant of this quadratic equation,
D= p2 (v2 - 4pY)

vanishes if either p = 0 or v2 = 4p'. 1t is important to find the places where D = 0 because Equation (15} gives
two, one or no value of z for 2 given y depending on the sign of D fo- that y. Now pz vanishes in the places
Yo V1 and Yo in the case?c A0, and for y = 0 only in the case ¢ = O; everywhere else p2 is positive. On the
other hand, the sign of v* - 4p' depends on the value of v and ¢. The function p’ (y) has a maximum at

y =1/2; its value is p’ (%) =4 e'2 - ¢. Frem this value, p' decreases to both sides, vanishes in two places

walch we shall call y{ and y§, and approaches the value -c as y approaches O or infinity. Thus, if v is

Viee? -4,

larger than

AR A TR Rt T
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then vz - 4p' is always positive, and D is positive everywhere except where p = 0. In this case the curve

q' = 0 consists of two branches which are separate for all positive values of y, except Vor Y10 Yor In the two
places where p' = 0, Equation (15) becomes linear and has only one solution, namely, 2 = p/v; one of the two
branches of the curve q' = O goes to z = eo. Tha shape of the curve is as shown in Figure 8. (This figure

as well as Figures 7 and 8 are not drawn tn scale; they merely show the general appearance of the curves.)

2. 4¢, then v° - 4p' is zero in two points which lie between

I, however, v is smaller than }16e”
41 and ¥4 and to different sides of y # 1/2. Between these two points D is negatlve. If this interval excludes
the point ¥y i.e., if D(yl) is positive, then the shape of the curve q* = 0 is as shown in Figure 7. The shape
of this curve is further modified in an obvicus way if D(yl) is negatlve, or if it is positive but :.rl is larger
than 1/2. In Figure 7, the sign of q' (y, z) is indicated by + and - signs. Inthe + regions the integral curves
of Equation (7) are curved upwards, in the - regions they are curved downwards. Compare this diagram
with Figure 4 where some of the integral curves are shown.

Figure 8 shows the types of curves q' = O which can occur in the case ¢ = O for varlous values of
v. The dotted line corresponds to v = 4/e, for which D vanishes only at y =1/2and y = 0.

Let us now calculate the derivative of q’ (y, z) with respect to vy in the direction of the integral

curves of (7). [his is
.2 g 3 g .
Tma=-5 a5 9 G2 aly, z)
An easy transformation shows that

(0 -2 & g,
1

Now p'(y) i3 positive between y = D and y = 1/2, and negative for all larger values of y, If we consider a
point on the curve q' = 0, then q" = -p"/z i3 positive for y<1/2, z <0, and for y>1/2, z >0; q" is negative
for y <1/2,2>0 and for 3y >1/2, 2<0. From this fact, a number of conclusions can be drawn concerning
the shape of the integral curves of (7). For instance, consider the case of Figure 8 for small v. The Inte-
gral cerves of Equation (7) have positive curvature (q' > 0) inside the loop which is formed by the left=hand
part of the curve g' =0, as well as to the right of the right-hand part of that curve. If an Integral curve
passes through a point insidz the loop, then the entire portion of the integral curve to the left of that point

is also within the lbop. In other words, an integral curve can leave the loop only in the direction of increas-
ing y, but not in the direction of decreasing y. For in a point where the integral curve crosses the boundary
of the loop, q' is zero and q" is negative, therefore to the right of this point on the integral curve, ¢ 1s
negative, and thus the points on the right are outside the loop; that 1s to say, in crossing the boundary of

the loop in the direction of increasing y along an integral curve of Equation (7), we are leaving the loop,

not entering it. Simlilarly, an integral curve of (7) can only enter but not leave, in the direction of increas- *
ing y, the area to the right of the right-hand part of the curve q' = 0, Analogous conclusions can be drawn
about the various portions of the area of positive q' in the cases of Figure 8 and Figure 7.




L

BALLISTIC RESEARCH LABORATORIES 17

A further conclusion, in the case of integral curves golng through points inside the loop in Figure &,
is that all such curves will go through the orlgin, and that in the neighborhood of the origin their curvature
remains positive. Their slope at the origin is 0. There are infinitely many curves of this kind, since they
{111 the entire area of the loop. They are the eurves of "T'ype 1-A" mentiocned in "Solution of the Transformed
Equation without Heat Lose," of this report. A similar reasoning applied to the right-hand purtion of the

area where q' is positive, leads to the curves of "Type III-C."

SUMMARY

Steady-state burning, as defined by Equation (5) or (8) can take on one of the followlne forms:

a. In the case without heat loss to the surrounding space, there are infinitely many salutlons in
v hich the temperature approaches absolute zero asymptotically as x tends to infinity, has a m2ximum at
some finite x and decreases toward zero to the left; one of these is distinguished by the fact that its maxi-
mum temperature is higher than that of any other solution in this group. There are also infinitely many
solutions (these, however, do not fulfill the boundary canditions of steady-state burning' in which the tem-
perature reaches zero for a finite x and mcréases veyond all bounds as x decreases, Retween these two
groups of solutions there is a third whose character depends on the value of the purning velocity, v. If
this is smaller than .80280, the solutions in this group have a maximum temrerature for some value of x,
and the temperature declines toward absolute zero to both sides of the maximum. If v is greater than,
or equal to, .90280 then the temperature in this intermediate group of solutions approaches infinity as x
decreases, and approaches zero as x grows to infinity. The limiting case of the first group appears to be
the most interesting one, and several examples (for various values of v) are plotted on Chart (3. However,
all the solutions of the first group are consistent with the conditions of steady-state burning,

b. In the case with heat loss, there is a unique solution which Is consistent with the conditions of
steady -state burning. On it, the temperature reaches a maximum for some finite x, deelines to both sides
and approaches the "initial temperature” Yo (close to room temperature) asym.ptotically as x grows to in-
finity. (For declining x, the temperature declines to absohite zero; but this part of the curve no longer
represents burning in the same substance.) Examples of such solutions, for varying values of flame speed
(v) and room temperature (ys) are shown in Chart 13, The solutions are practicaily independent of the
value of ¢, the constant which determines the amount of heat loss, as long as ¢ is reasonably small but
different from zero.

There are numerous other solutions of the differentlal equation of steady-state burning with heat
loss, but none of them satisfies the initial conditions usually associsted wi*h burning; in particuiar, there
is no other solution which starts at room temperature. There are inflnitely many solutions which approach
the lgnition temperature v, from above or helow as x increases to inflnity {cvirvez of Type I-A and I-C,
respectively); others are similar to the solutlons of Type II-C and LI-C of the case without heat joss in
that the temperature increases to infinity with decreasing x; a few solutions (shown {a Diagram 4 near the

origin) remain at low temperatures througho:. .

I

IR i
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Chart 4 shows all types of solutions {of the "transformed equation™ for the case in which the para-
meters v, ¢, Ys have realistic values; in particular, that v is smaller than V, that Vg is sufficiently small
so that p(y) has three real roots, and that ¢ is small. Other lypes of solutions occur for values of the para-
metars cutside these llmits. For instance, if ¢ is large enough relative to v, so that p'(y1)> %vz, then tha
transformed equation has solutions which spiral arcund the point Y10 and the corresponding solutions of
the eguation of burning cscillate about the ignition temperatura.

Fren L AL

Franz L, Alt

e T B 1 e 2 T AL AT T e e

BREL LTt R s

B AT

AL




PR NP A s -y

18

BALLISTIC RESEARCH LABORATORIES

{A) BUNLYHIINIL SA

{2) INJOVHD JNNLVUIINIL

OBZ06 <A -S50" LV3H ON

NOLLYNOI Q3IWHOISNVYL
3Hi 40 SNOUNTOS JO 3dVHS - 2 914

T JIN VTN L 5A
(2) ANIOVND FuNIVERINIL
08206 >A -$$07 LYW ON
'NOLLYNO3 QIWHOISNVHL
341 30 SNOILNTOS 40 3dVHS -1 914

7

A




20

GALLISTIC RESEARCH LABORATORIES

FiG. 3- SHAPE OF SOLUTIONS OF THE

EQUATION OF BURNING.
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F16.8 - CURVATURE OF INTEGRAL

CURVES OF THE TRANSFORMED
EQUATION. WITH MEAT LOSS~

+ LARGE VELOCITY OF BURNING
/..\!\ (V:) 160 -2-46,
I
» -
+ + Yo N\_ +

-

——— v o e

FIG. T-CURVATURE OF INTEGRAL CURVES

OF THE TRANSFORMED EQUATION.
WATH HEAT LOSS- SMALL VELOGITY OF
BURNING (VT <16e~24C) LOW IGNITION
TEMPERATURE,

F1G. 8-CURVATURE OF
INTEGRAL CURVES OF

THE TRANSFORMED
v small EQUATION.

NO HEAT LOSS -VARIOUS

= _ _ —= VELOCITIES OF BURNING,

v large

THE CURVES SHOWN IN FIG'S 6 -8
ARE THE LOCI OF POINTS OF IN-
FLECTION OF THE INTEGRAL
CURVES. THE SIGNS (+ OR-) DENOTE
AREAS WHERE THE INTEGRAL
GURVES ARE GONGAVE OR
CONVEX RESPEGTIVELY.
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